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ABSTRACT THE CLASSIFICATION §
The Structural Classification of Proteins (SCOP) data- The classification of the proteins is on hierarchical levels. %
base provides a detailed and comprehensive descrip- . 3
tion of the relationships of all known proteins struc- Family 2
tures. The classification is on hierarchical levels: the Proteins are clustered together into families on the basis of oneXof
first two levels, family and superfamily, describe near two criteria that imply their having a common evoluﬂonaryi
and far evolutionary relationships; the third, fold, origin: first, all proteins that have residue identities of 30% angl
describes geometrical relationships. The distinction greater; second, proteins with lower sequence identities Kgit
between evolutionary relationships and those that whose functions and structures are very similar; for exampl§
arise from the physics and chemistry of proteins is a globins with sequence identities of 15%. 2
feature that is unique to this database, so far. The 3
database can be used as a source of data to calibrate Superfamily o
sequence search algorithms and for the generation of - ) o c
population statistics on protein structures. The data- Families, whose proteins have low sequence identities but whase
base and its associated files are freely accessible from structures and, in many cases, functional features suggest thit a
a number of WWW sites mirrored from URL common evolutionary origin is probable, are placed together‘gw
http:/scop.mrc-Imb.cam.ac.uk/scop/ superfamilies; for example, the variable and constant domalns(Qf
immunoglobulins. 8
>
INTRODUCTION Common fold =

uperfamilies and families are defined as having a common f&d
heir proteins have the same major secondary structures in e
(PDB; 1) contains 7723 entries and the number is increasing by me arrangement and with the same topological connections 8or
about 200 a month. These proteins have structural similaritieg-ant reviews see refsand §. The structural similarities of &
with other proteins and, in many cases, share a cOMMYPyieins in the same fold category probably arise from the physigs

evolutionary origin. To facilitate access to this information, We,\4 chemistrv of proteins favouring certain packing arran
have constructed the Structural Classification of Proteins (SCOR)ants and chéln toppologles g P g g@

database). Itincludes not only all proteins in the current version
of the PDB, but many proteins for which there are pUbI'Sheelass
descriptions but whose co-ordinates are not yet available.

The classification of proteins in SCOP has been constructed e different folds have been grouped into classes. Most of the
visual inspection and comparison of structures. Given the currefialds are assigned to one of the five structural classes: @) all-
limitations of purely automatic procedures, we believe thishose whose structure is essentially formed by helices; (B) all-
approach produces the most accurate and useful results. The timitse whose structure is essentially formefi-sheets; (iiia/(,
of classification is usually the protein domain. Small proteins, anthose witha-helices and3-strands; (iv)a+3, those in which
most of those of medium size, have a single domain and acehelices and {strands are largely segregated; and (v) multi-
therefore, treated as a whole. The domains in large proteins aemain, those with domains of different fold and for which no
usually classified individually. homologues are known at present.

At present (October, 1998) the Brookhaven Protein Databan
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Sample Scop Hierarchy
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2aaa 6taa  2taa lcdg lcgt lcgu Ref/PDB

Figure 1.Region of SCOP hierarchy. All the major levels, including class, fold, superfamily, and family are shown. Also showridar@ jmiditeins and the lowest
level, either the PDB coordinate identifier or a literature reference. Copirigjiaf4 Steven E. Brenner; reproduced with permission.
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Other classes have been assigned for peptides, small protefigm a keyword The keyword search facility returns a list ofg

theoretical models, nucleic acids and carbohydrates. TheS€OP pages containing the word entered or combinations »f
hierarchical levels are illustrated in Figure words separated by a series of boolean operators. §

. ) Q
There are now a number of other databases which CIaSSE¥om a PDB identifierThe PDB entry viewer links PDB entries §

protein structures, such as CATH]), FSSP 9,10), Entrez (1) : . ) o
and DDBASE (2), however the distinction between evolu- to various graphical views, external databases and SCOP |ts§f.

=)
tionary relationships and those that arise from the physics amy history Pages are provided that order folds, superfamilies asid
chemistry of proteins is a feature that is, so far, unique to SCOBmilies by date of entry into PDB or publication. This is both fof
Because functional similarity is implied by an evolutionaryinterest and to make it easier to keep up to date with the
relationship but not necessarily by a physical relationship, weppearance of new folds or significant new members of existisg
believe that this classification level is of considerable value, fdplds. 5'
example, as a way of reliably linking very distant sequence In addition to the information on structural and evolutionarg
families. relationships contained within SCOP, each entry (for which
co-ordinates are available) has links to images of the structugg,
interactive molecular viewers, the atomic co-ordinates, data gn
ORGANISATION AND FACILITIES OF SCOP functional conformational changes, sequence data and ho@o-
logues and MEDLINE abstracts. w
The SCOP database is available as a set of tightly coupled© facilitate rapid and effective access to SCOP, a number
hypertext pages on the world wide web (WWW) via URL:Mirrors have been established, a full current list of which can ﬁe
http://scop.mrc-Imb.cam.ac.uk/scop/ fqund via the above URL. The facﬂm«_as prowded_ by the varioug
The interface to SCOP has been designed to facilitate bo#{€S are always the same, so you will lose nothing by accessg
detailed searching of particular families and browsing of th¥our nearest mirror. The implementation does differ: for examplg,

whole database. To this end, there are a variety of differeftirently sequence similarity searching is always carried out gt
techniques for navigation as detailed below. the main, scop.mrc-Imb.cam.ac.uk site, however, this is trang-

parent to the user who will always be returned a search resyls
Browsing through the SCOP hierarcl§COP is organised as a page marked up with links to pages on the mirror that they startgd
tree structure. Entering at the top of the hierarchy, the user cHRm.
navigate through the levels of Class, Fold, Superfamily, Family
and Species to the leaves of the tree which are structural domasHER USES OF SCOP
of individual PDB entries. An alternative hierarchy of Folds, : : :
Superfamilies and Families by the date of solution of the ﬁrsivaluatlng the effectiveness of sequence alignment

N . : ethods

representative structure is also provided.

Sequence database searching plays a role in virtually every
From an amino acid sequencehe sequence similarity search branch of molecular biology and is crucial for interpreting the
facility allows any sequence of interest to be searched agairsg#quences issuing forth from genome projects. Despite this, the
databases of protein sequences classified in SCOP (see belowgrall and relative capabilities of different search procedures
using the algorithms BLASTL@), FASTA or SSEARCHX4).  have until recently been largely unknown. This is because it is
SCOP can then be entered from the list of PDB chains found dlifficult to verify algorithms on sample data as this requires large
be similar and the similarity can be displayed visually. data sets of proteins whose evolutionary relationships are known
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unambiguously and independently of the methods being evalindividual structures with their evolutionary and structurally
ated (nearly all known homologs have been identified byelated counterparts. On a more general level, the highest levels
sequence analysis, the method to be tested). Also, it is generaifyclassification provide an excellent overview of the diversity of
very difficult to know, in the absence of structural data, whethgurotein structures now known and would be appropriate both for
two proteins that lack clear sequence similarity are unrelatetesearchers and students. Having created the classification we
This has meant that, although previous evaluations have helpealve found that it has many other uses, some of which have been
improve sequence comparison, they have suffered from insuffisted here. We hope that other researchers will find yet more uses
cient, imperfectly characterised, or artificial test daf.( for the raw data files that are now provided with each release.

As part of the maintenance of SCOP, new structures are
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